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bstract

A simulated verification and validation of the hybrid neural-network rate-function (HNNRF) approach to modeling batch reactor systems is
rovided. In chemical reactor processes, some measurements may not be easily obtainable, and the designed neural-network rate-function (NNRF)
odel in our previous work did not propose a method to include the state variables for the suggested dynamic model. To overcome this difficulty,

he approximated mechanistic equations characterizing these immeasurable state variables could be incorporated into the NNRF model to form the
ybrid neural-network rate-function model. The sequential pseudo-uniform design (SPUD) is used to locate the sufficient but limited experiments
o provide the HNNRF model with rich information. In this research, the HNNRF modeling capability over a large operating region was evaluated

mploying a simulated polymerization reactor system. In addition to the comparative benefit of short time expenditure for building the model, the
erformance of the identified HNNRF model is quite acceptable in the face of noisy measurements and the identified model could be applied to
etermine the optimal recipe or the operating conditions of the reactor systems.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Effective control, optimization, or monitoring of a process
eeds an accurate model characterizing the nonlinear dynamic
ehavior. These targets may be achievable through a reliable
rocess model formulated classically on the basis of mass and
nergy balance for chemical processes [1,2]. When one is to
onstruct a mechanistic model for a batch or semibatch reac-
or system, the most challenging difficulties are to determine
he reaction rates of the reaction system by proposing a suitable
eaction laws and estimating the uncorrelated parameters used

n the proposed rate laws. Generally, the mathematical expres-
ions describing the rate laws as a function of the variables
re unknown. In contrast, if these expressions are available,

Abbreviations: AIBN, azobis(isobutyronitrile); ANN, artificial neural net-
ork; FANN, feedforward neural networks; FD, factorial design; HNNRF,
ybrid neural-network rate-function; MMA, methyl methacrylate; MSE, mean
quared error; NNPF, neural-network parameter-function; NNRF, neural-
etwork rate-function; SPUD, sequential pseudo-uniform design; UD, uniform
esign
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he unknown parameters have to be fitted employing nonlin-
ar optimization techniques and the correlated parameters are
sually estimated [3]. In order to overcome these difficulties,
eural networks have been utilized as an alternative to the tradi-
ional mathematical models to simulate nonlinear patterns [4].
evelopment of a neural wok model demands less time than that
eeds on the basis of traditional mathematical models because
systematic approach is usually provided.

The conventionally adopted architecture of artificial neural
etworks (ANNs) for process modeling is the layered feedfor-
ard artificial neural networks (FANNs) [5,6]. Before a neural
etwork is applied to a set of data for obtaining a data-driven
odel, factors such as the topology of the network, along with

he measure of the causal importance of individual input vari-
bles [7,8], must be taken into account. Hybrid neural network
rst principles architecture is an alternative neural network mod-
ling approach that can be found in the literature [9–13]. The
ybrid model combines a partial first principles model, which
ncorporates the then available knowledge about the process

eing modeled into a neural network that serves as an estima-
or of unmeasured process parameters difficult to be determined
rom first principles. This hybrid model has better properties
han standard black-box neural network models in that it is
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Nomenclature

0 initial
a curve fitting parameter
E activation energy (kJ/(kmol K))
f nonlinear function
g function for curve fitting
h measurement function
HI polydispersity
I initiator
J sensitivity information value
kd rate constant for the initiator decomposition reac-

tion (s−1)
M monomer molecular
M̄n number average molecular weight of polymeriza-

tion (kg/kmol)
n the dimension of the recurrent states
nm number of measurements during a batch operation
nt number of total batches
ns number of samples
PN number-average degree of polymerization
t time (s)
tf final reaction time for polymerization reaction (s)
T temperature (◦C)
U uniform design
Un(ns) UD with s control facors and n levels partitioned

in each control factor; a total of n experiments are
designed

SPUDm((m + n)s) SPUD with s control facors and m + n
levels partitioned in each control factor (followed
the Un(ns) design); a total of m experiments are
designed

u external input
V volume of reacting mixture (m3)
W weight (kg)
x input vector of FANN model
x′ scaled input of FANN model
ẋ′ scaled output of FANN model
x the vector of n variables
X conversion of monomer
y process measurements
y′ scaled process measurements
�
y model output
�
y′ scaled model output
[] molar concentration (kmol/m3)

Greek letters
λi|i=0,1,2 ith moment of living radical distribution
μi|i=0,1,2 ith moment of dead polymer distribution
σ measurement noise

Superscript
ˆ estimated quantity

Subscripts
0 initial
d decomposition
i initial
M monomer
n number of experimental trials for FD/UD/SPUD
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modeling approach, the rate change of the states as a function
of the selected states could be built directly by an FANN for an
unknown process. In this way, the postulated functional forms in
the NNPF model will no longer be required. The predictive capa-

Table 1
MSE of the identified HNNRF model based on the data collected from different
design of experiments

Design of experiments MSE for the recall MSE for the testing

FD8(23) (8 batches) 0.333 249.032
(U8(83) (8 batches) 0.158 0.254
SPUD7(153) (15 batches)a 0.160 0.169
SPUD7(153) (15 batches)b 0.160 0.192
* optimal S
method
s solvent

ble to interpolate and extrapolate much more accurately, is
asier to analyze and interpret, and requires significantly fewer
raining examples. The motivation of the studies [12,13] arose
rom the fact that biotechnological reactions are difficult to
odel, with reaction mechanisms still unknown and the reac-

ion order yet to be postulated and experimentally verified.
he resulting fundamental model is only as good as the postu-

ated functional form in the model. Neural networks, which are
niversal-function approximators, can instead be used to learn
he parameter functions in dynamic models. Thus, the adoption
f prior process knowledge (usually in the form of conservation
quations) coupled with the approximation capabilities of neu-
al networks constitutes the neural-network parameter-function
NNPF) modeling approach.

Although the NNPF modeling approach had been verified
xperimentally, with only two unknown parameters involved
n the dynamic equations, the reactor system studied in the
orks of Tholudur and Ramirez [12,13] was rather simple.
imilar case studies with limited parameters can be found in

he works cited [9,10] in developing the hybrid neural-network
rst principles approach. In case of the free radical polymer-

zation reaction of methyl methacrylate (MMA) [1,14], there
re more than 12 parameters involved. Direct application of
NPF modeling approach or hybrid modeling approach to the
olymerization reaction system will be restricted. Chang and
ung [15] proposed the neural-network rate-function (NNRF)
odeling approach to obtain a reliable dynamic neural net-
ork model characterizing the complex MMA polymerization

eactions carried out in a batch reactor. In the proposed NNRF
PUD7(153) (15 batches)c 0.523 4.274

a Adopting [I] and μ1 as the recurrent states.
b Adopting [I] and X as the recurrent states.
c Adopting [I], μ1, and X as the recurrent states.
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where xi=1–n are the elements of the state variables x, fi=1–n rate
functions, u external inputs, and ci·x is the array multiplication
Fig. 1. Schematic diagram of hybrid ne

ility of the NNRF model was found to be acceptable and optimal
emperature trajectories were calculated accordingly [15]. How-
ver, the NNRF model developed [15] was built only on the
easurable states. It did not include the state variables diffi-

ult to measure, among which was the initiator concentration
uring the polymerization reaction. Therefore, in this work, we
ill extend the modeling methodology of Chang and Hung [15]

nd propose the hybrid neural-network rate-function (HNNRF)
odeling approach to tackle this problem, which is usually

ncountered in complex reactor systems. In addition, both the
ay to measure the causal importance of individual input vari-

bles and the computational algorithm to cope with the noisy
easurements in building the NNRF or HNNRF model are also

ddressed in this work.

. Simulation of the batch polymerization reactor

To demonstrate the applicability of the proposed HNNRF
odeling approach, free radical solution polymerization reac-

ions of MMA in a batch reactor were simulated as a testing
rocess. Model equations for batch MMA polymerization reac-
ions and the related kinetic parameters can be found in the
iterature [1,14–16]. Especially, one can find the details of math-

matical description of MMA solution polymerization batch
eactor in the appendix of Chang and Hung [15]. The loading
onditions (WM (MMA) = 3.492 kg; Ws (toluene) = 5.239 kg; [I]
AIBN) = 0.05–0.1 mol/dm3) were used in this study.

able 2
he relationship between the available measurements and the derived
easurements

vailable measurements Derived measurements

*(tf) μ∗
0f ≡ V (0)[M(0)]X∗(tf)

P∗
N(tf)

N
*(tf) μ∗

1f ≡ V (0)[M(0)]X∗(tf)
I*(tf) μ∗

2f ≡ V (0)[M(0)]X∗(tf)P∗
N(tf)HI∗(tf) F

d

etwork rate-function (HNNRF) model.

. Hybrid neural-network rate-function model

Development of the hybrid neural-network rate-function
HNNRF) model for nonlinear dynamic systems is based on
he developed NNRF model (NNRF) [15]. In developing the
NRF or HNNRF model, the differential equations governing

he dynamic behavior of a nonlinear process are represented as

ẋi=1–n = fi=1–n(x̄i, u)

x̄i = ci · x (1)
ig. 2. The design of experiments based on the UD and SPUD, and the testing
ata sets ((©) U8(83); (�) SPUD7(153); (×) testing data sets).
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Fig. 3. Curve fitting of the states X, μ

f ci and x. The vector ci is a vector whose element is either zero
r one.

Many studies have proven the capability of FANNs to approx-
mate any nonlinear relationship between a set of inputs and
utputs [9,17,18]. An FANN can be applied to construct a
apping between inputs x and outputs y of a system without

iscovering the physical relationship between inputs and out-
uts. If the inputs x are selected to be the measurable state
ariables and the outputs y the rates of the corresponding measur-
ble state variables, the constructed FANN can be embedded in
he dynamic equations governing the measurable state variables
o obtain the dynamic behavior of the state variables. Accord-
ng to this approach, the NNRF model can be constructed for

complex reaction system [15]. In contrast, if the dynamic
ehavior of some state variables that are difficult to measure
ay be described by the approximate mechanistic equations

f they are available. Combination of a completely black-box
odel (NNRF model adopted here) with approximate mech-

nistic equations could construct the so-called HNNRF model
Fig. 1). Although it seems that the extension of the NNRF model
o the HNNRF model is straightforward and simple, the capa-
ility of the HNNRF modeling approach investigated in this

ork proposes an approach to obtain a reliable dynamic model
ver a broad operating region from the accessible data for real
omplex batch reaction processes without resorting to complex
athematical manipulations.

d
c
w
c

, and μ2 for one of the experiments.

.1. Derivative estimation of state variables

When one applies the NNRF or HNNRF modeling approach
o an unknown process, the rates of states from the available

easurements are needed. In the face of noise-corrupted mea-
urements, a collection of time dependent experimental data
(t) is assumed to be located along a state trajectory x̂ = gj(t)
haracterized by one of the following functions:

1 = a1 ea3t + a2 ea4t (2)

2 = 1

a1 + a2t
(3)

3 = a1 + a2t + a3t
2 + a4t

3 (4)

4 = t

a1 + a2t
(5)

5 = a1

(1 + e−a2(t−a3))
+ a4 (6)

6 = a1t
a2 (7)

The forms of these profiles are possible patterns for the

ynamic experimental data usually encountered in batch pro-
esses. More functional form of x̂ = g(t) could be found in the
ork of Edgar and Himmelblau [19] and adopted as a potential

andidate. Estimation of the parameters in a selected function for
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Fig. 4. The sensitivity information values with respect to X

urve fitting of the experimental data is achieved by the following
inimization problem:
Objective

Min
=1∼6

⎡
⎣ Min

a1∼a4

m∑
j=1

(yj − gij)2

⎤
⎦ (8)

Once a function representing the data points is obtained using
he above nonlinear programming, the derivative of this func-
ion can be calculated analytically or numerically to obtain the
erivative of the measurable state variables ẋi=1–n.

.2. Neural network training

Once the rates of states are estimated, they could be related
o the external inputs and the recurrent states via FANNs. For
ANN training, appropriate selection of the inputs including
he external inputs and the recurrent states is very important
o assure the performance of the identified NNRF or HNNRF

odel. The neural network models represent a powerful tool
or complicated process identification. However, because they
elong to the category of data-driven “black box” models, they

annot avoid the consequences of the “garbage in–garbage out”
ule [8]. Instead of applying the information theoretic subset
election (ITSS) method to select appropriate subsets of inputs
or FANN model development [7,8], the following sensitivity

t

M

μ1, μ2 (Eq. (9)) calculated for the eight batches (U8(83)).

nformation value estimated directly on the basis of the identified
ANNs could be used to rate the relevance of the input variables
o an output variable:

i,j =
nt∑

l=1

∫ tf

t0

∂ẋ′
i

∂x′
j

dt (9)

larger value of Ji,j will characterize the scaled input x′
j con-

aining more information relevant to the desired FANN mapping
etween the scaled input x′

j and the scaled output x′
i for all the

t batches. Computer experiments adopting the significant input
ariables, appropriate hidden nodes of an FANN in the HNNRF
odel, and appropriate training epochs could achieve an accept-

ble identified HNNRF model. The input and output data are
caled for training by the following equation:

′
i = 0.9

(
xi − xi,min

xi,max − xi,min

)
+ 0.05 (10)

The performance of an identified HNNRF model is estimated
n the basis of the mean squared error (MSE) between the scaled
tted measurements and the scaled model outputs calculated
sing all the measurements in the recalled data sets and the

esting data sets, respectively, according to:

SE =
∑nt

i=1
∑nm

j=1
∑ns

k=1(y′
ijk − �y′

ijk)2

nt
(11)
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Fig. 5. The time profiles of the output sensitivity

To provide an identified HNNRF model with rich informa-
ion, the developed sequential pseudo-uniform design (SPUD)

ethod [20] will be applied to locate limited but sufficient
xperiments for gathering the experimental data. The developed
PUD method is an extended version of the uniform design (UD)
ethod [21]. With respect to the detail of the SPUD method, one

ould make reference to our previous work [20]. In this work,
he experiments for gathering the training data based on the UD

ethod will be performed at first. If the data are not enough,
he further experiments located by the SPUD method will pro-

ide the HNNRF identification with further information. The
dditional experiments located around the interpolated spatial
ocations of the experiments for gathering the training data sets
ill be used as the validation data sets.

able 3
he constructed FANNs in the HNNRF model using FD8(23) and U8(83) experiment

ANN Output External input Recurrent states Number

1 Ẋ T [I], μ1 7
2 μ̇0 T [I], μ1 2
3 μ̇1 T [I], μ1 2
4 μ̇2 T [I], μ1 3
espect to inputs (the FANNs shown in Table 3).

. HNNRF model development for the batch
olymerization reactor

Because the concentration of the initiator is difficult to mea-
ure, an identified NNRF model governing the major state
ariables of this polymerization reaction system can be com-
ined with the approximate mechanistic equation (Eq. (12)),
hich describes the dynamic behavior of the initiator to estab-

ish the HNNRF model for the MMA polymerization reaction
ystem:
d[I]

dt
= −k′

d [I] (12)

al data, respectively

of hidden nodes Transfer function used
(first layer)

Transfer function used
(second layer)

Log-sigmoid Linear
Log-sigmoid Linear
Log-sigmoid Linear
Log-sigmoid Linear
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ig. 6. Comparison of the states generated from the identified HNNRF model
Table 4) and the process for one of the recalled experiments (a constant tem-
erature profile).

n the above equation, k′
d0 = 0.7kd0 and E′

d = 0.994Ed were
ssumed.

To provide the identified HNNRF model with rich informa-
ion, the experiment design methods (U8(83) and SPUD7(153)
hown in the first column of Table 1) were performed. The con-
rol factors and the range of each control factor used in this
ase study are the initial and final temperatures Ti, Tf of the
esigned temperature trajectories (45–70 ◦C) and the initial ini-
iator concentration [I] (0.05–0.1 mol/dm3). The external input
0
temperature trajectory) was designed as:

(t) = X(t)

Xf
(Tf − Ti) + Ti (13)

c
i
a
i

able 4
he constructed FANNs in the HNNRF model using U8(83) + SPUD7(153) experime

ANN Output External input Recurrent states Number

1 Ẋ T [I], μ1 10
2 μ̇0 T [I], μ1 2
3 μ̇1 T [I], μ1 2
4 μ̇2 T [I], μ1 2
ig. 7. Comparison of the states generated from the identified HNNRF model
Table 4) and the process for one of the recalled experiments (an exponential
ecay temperature profile).

A spatial plot of the experimental locations in terms of these
hree control factors designed by the UD (symbol ‘©’) followed
y the SPUD (symbol ‘�’) is shown in Fig. 2. The additional
ine experimental locations indicated by symbol ‘×’ in the
ame figure are arranged for assessing the identified HNNRF
odel. For demonstration of the applicability of the proposed
NNRF modeling approach to the process in which some states

re not easily achievable, the testing batches consist of var-
ed doses of the initiator loading as shown in Fig. 2. In order
o examine the performance of the identified HNNRF model

onfronted with conventional temperature trajectories employed
n a batch operation, there are two more testing experiments
long the designed temperature trajectories as to be exhibited
n Figs. 9 and 10. Furthermore, to ascertain that the UD or

ntal data

of hidden nodes Transfer function used
(first layer)

Transfer function used
(second layer)

Log-sigmoid Linear
Log-sigmoid Linear
Log-sigmoid Linear
Log-sigmoid Linear
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ig. 8. Comparison of the states generated from the identified HNNRF model
Table 4) and the process for one of the testing experiments (an exponential
ecay temperature profile).

PUD method could provide us with more information about the
nknown process, the 23 factorial design FD8(23) experiments
ere also performed for comparison (Table 1). The measurement
oise for X, HI, and M̄n was assumed to be σX = 0.01, σHI = 0.1,
nd σM̄n

= 5000 kg/kmol, respectively, according to our pre-
ious experimental work [22]. The eight batches (U8(83)) with
epeated measurements at the sampling time (symbols shown in
ig. 2) were first employed for constructing the HNNRF model.
he available measurements were X, M̄n, and HI. The derived
easurements X, μ0, μ1, and μ2 can be obtained based on the

quations given in Table 2. Applying the method of obtaining
he derivatives of state variables to this case study, the states X,

0, μ1, and μ2 are properly fitted to one of the Eqs. (2)–(7)
nd are shown in Fig. 3. The rate changes of X, μ0, μ1, and μ2
ere computed using the fitted curve. Adopting 80 data points
f the fitted T, [I], X, μ0, μ1, μ2 as the inputs and one of the
orresponding rate changes of X, μ0, μ1, and μ2 as the output
or each batch, four FANNs were well trained and the sensitiv-

ty information values with respect to X, μ0, μ1, μ2 (Eq. (9))
ere calculated for these eight batches (Fig. 4). Because T is

he external input and [I] is the desired recurrent state, these
wo inputs were consequently not considered in the calcula-

t
r
i
p

ig. 9. Comparison of the states generated from the identified HNNRF model
Table 4) and the process for one of the testing experiments (a traditional heating,
eacting and cooling temperature profile).

ion of the sensitivity information values. One of the sensitivity
rofiles for the FANN characterizing the inputs and the output
s shown in Fig. 5. Based on Fig. 4, we can select appropri-
te subsets of inputs for constructing these four FANNs to be
mbedded in the HNNRF model. Possible choices of relevant
nputs for all the FANNs are (T, [I], μ1), (T, [I], X), and (T, [I],

1, X).
The identified HNNRF models (Table 3) on the basis of the

vailable data sets (FD8(23) and U8(83) in Table 1, respectively)
re summarized in columns two and three as shown in Table 1.
here is a small difference in the MSE value between these

wo methods for the recalled sets but a larger discrepancy exists
or the testing sets. This indicates the advantage of the UD
ethod over the FD method in providing the HNNRF model
ith the dynamic information given the same batches. One
ossible reason is that there are eight levels utilized in each
ontrol factor designed by the UD method as opposed to three
evels used in the FD method. From the data shown in Table 1,

he identified HNNRF model appears to be acceptable in the
ecalled sets (MSE = 0.158) and the testing sets (MSE = 0.254)
f the experimental resources are limited. However, there exists
otential improvement in the testing sets. Therefore, the data
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[10] M.L. Thompson, M.A. Kramer, AIChE J. 40 (1994) 1328.
[11] Shene, C. Diez, S. Bravo, Comput. Chem. Eng. 23 (1999) 1097.
ig. 10. Comparison of the states generated from the identified HNNRF model
Table 4) and the process for one of the testing experiments (a step-wise tem-
erature profile).

f the additional seven batches designed via the SPUD method
Fig. 2) combined with the previous eight batches were used to
onstruct another HNNRF model (Table 4). One can find that
he generalization of the identified HNNRF model for the testing
et is really improved (the MSE is reduced from 0.254 to 0.169)
s shown in Table 1. The performance of the identified HNNRF
odel (Table 4) for the recalled sets are shown in Figs. 6 and 7
hile those for the testing sets are shown in Figs. 8–10. These
ve figures are used only for illustration. The results for both

he recalled sets and the testing sets are acceptable in spite
f the trajectory discrepancies in the initiator concentration
etween the process and the model shown in these figures.
his verifies that the main objective of this work is achieved.
he HNNRF model extends the capability of the NNRF
odel [15] to the process in which some states are not easily

chievable.
The other potential choices of relevant inputs for all the

ANNs are (T, [I], X), and (T, [I], μ1, X). As shown in Table 1,

he identified HNNRF model with the recurrent states T, [I], X
erforms comparably with that adopting the recurrent states T,
I], μ1. For brevity, the figures for displaying the performance
re left out. We also evaluated the performance of the HNNRF

[
[
[
[

ring Journal 130 (2007) 19–28 27

odel on the basis of 15 batches and adopting T, [I], μ1, X as the
ecurrent states, but no acceptable result was obtained (Table 1).
his may be attributed to the fact that an excessive number of

nputs were adopted to construct the FANNs.

. Conclusions

Direction application of the NNRF model hinges on whether
ll the states of the process are measurable. Whereas the con-
entration of the initiator is difficult to measure during the
olymerization of MMA, the NNRF model governing the major
tate variables of this polymerization reaction system could be
ombined with the approximate mechanistic model characteriz-
ng the reaction behavior of the initiator to establish the HNNRF

odel for the MMA polymerization reaction system.
To provide the identified HNNRF model with rich informa-

ion, the UD method is much better than the conventional FD
ethod given the same batches. A reliable HNNRF model with

our FANNs was identified using 8 and 15 batches information,
lthough the latter exhibited a better prediction capability. Fac-
ng the measurements corrupted with noise, the capability of the
dentified HNNRF model is quite acceptable. Furthermore, the
ppropriate input adoption of the FANNS plays an import role in
onstructing a reliable HNNRF model. The sensitivity informa-
ion value estimated on the basis of the fitted experimental data
an direct the user to choose relevant inputs. Once the HNNRF
odel is identified, it could be implemented to determine the

ptimal feed loadings and operating conditions of complex pro-
esses, which are difficult to be modeled by a mechanistic model
mploying the first principles.
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